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We consider low-rank approximations to matrix differential equations of the form

Ȧ(t) = F (t, A(t)), A(0) ∈ Cm×n.

Such problems appear, e.g., after spatial discretisation of time-dependent partial
differential equations (PDEs) in two spatial dimensions. Higher-dimensional PDEs
give rise to higher order tensor differential equations of similar form. Tensor differ-
ential equations in tensor-train format [5] are also covered by the present analysis,
but for the sake of simplicity we will restrict this presentation to the matrix case.
Low-rank approximations have been used with success for high-dimensional PDEs,
most predominantly in the multi-configurational time-dependent Hartree method
[4]. There are, however, several open questions regarding the convergence of low-
rank approximations. In this work, we answer one of these questions positively.
We prove that if F has a modest Lipschitz constant and maps almost onto the
tangent space of the low-rank manifold, then a recently proposed time-stepping
scheme for low-rank approximations [2, 3] will give an accurate result, also in the
presence of small singular values [1]. The scheme was first proposed for matrices
in [2], and then extended to tensors in tensor-train format in [3].

In the vicinity of small nonzero singular values, the manifold Mr ⊂ Cm×n of
rank-r matrices has strong curvature. That is, if σr is the rth singular value of
X ∈ Mr, then the Lipschitz constant of the projection P (X) onto the tangent
space TXMr of Mr at X is proportional to σ−1

r . This means that standard
time-stepping schemes for the dynamical low-rank approximation

Ẏ (t) = P (Y )F (t, Y (t)), Y (0) = Y0 ≈ A(0)

will break down in the presence of small singular values. The scheme of [2, 3], on
the other hand, is robust in this case.

With the decomposition Y = USV ∗, where S ∈ Cr×r and U, V have orthonor-
mal columns, the projection onto the tangent space has the representation

P (Y )Z = ZV V ∗ − UU∗ZV V ∗ + UU∗Z for Z ∈ Cm×n.

The method of [2, 3] uses this decomposition of the projection to construct a
splitting scheme. For matrices, given Y0 = U0S0V

∗
0 , the scheme reads:

• Solve K̇(t) = F (t,K(t)V ∗
0 ), K0 = U0S0.

• Make a QR-decomposition [U1, Ŝ1] = qr (K(h)).

• Solve Ṡ(t) = −U∗
1F (t, U1S(t)V ∗

0 )V0, S(0) = Ŝ1, and let S̃0 = S(h).

• Solve L̇(t) = F (t, UL(t)∗)∗U1, L(0) = V0S̃
∗
0 .

• Make a QR-decomposition [V1, S
∗
1 ] = qr (L(h)).

Then, Y1 = U1S1V
∗
1 is a consistent approximation of Y (h). For many problems F

can be evaluated without forming the full m×n matrix. In such cases the scheme
is very efficient, as it only works with much smaller matrices.
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In [1] we prove that if F (t, Y ) is Lipschitz continuous in its second argument,
and if it up to an ε-perturbation maps onto TYMr, then the error of the splitting
scheme can be bounded in terms of ε and the time step h, independently of the
singular values. The proof is based on two important properties of the scheme:

• If F (t, A) = F (t), i.e., the right-hand side does not explicitly depend on
A, and if A(t) ∈ Mr for all t, then the splitting scheme is exact for any
time step h. This result was proven in [2].
• The matrices U and V stay constant during some of the substeps. Further-

more, the perturbation from the exact flow of FV V ∗ arising in the first
substep is invariant to projection with V V ∗, and similarly in substeps two
and three with the relevant projections.

To prove the result, we construct a path X(t) on Mr close to A(t). By the
assumptions on F , such a path exists. By the exactness result, the splitting
schemed applied to Ȧ(t) = Ẋ(t) would give A(h) = X(h). Using the Gröbner–
Alekseev lemma we estimate how much we, in each substep, deviate from the
scheme applied to Ẋ(t). As X(t) and Y (t) are different paths on the manifold,
the Lipschitz constant of F will here enter in the estimate. Using the preservation
of U and V in the relevant substeps we can bound the effect of these deviations
independently of the singular values. For the details we refer to [1].

As the error estimate depends on the Lipschitz constant of F , it is not valid for
(spatial discretisations of) PDEs. Extending the error analysis to cover also this
case remains an open problem. Numerically we get much better results for PDEs
than what is explained by the present analysis.
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